- -
Solved Examples
Click on a 'View Solution' below for other questions:
B   Using Newton's approximation method, find the zero of the function x2 - 55.
   B
View Solution
B   Find the positive root of the equation ex - 2x - 1 = 0 using Newton's method.   B View Solution
B   Use Newton's method for approximating the zero(s) of the function
f(x) = x3 - 8x + 5.   B
View Solution
B   Find the roots of f(x) = x2 - 99 in the range 0 < x < 20 using newton's method.
   B
View Solution
B   Approximate the zero of the function f(x) = x3 - 19 using Newton's method.   B View Solution
B   Use Newton's method for approximating the zero of the function f(x) = x3 - x + 9.   B View Solution
B   Use Newton's method to find the roots of the equation f(x) = e2x + 5x = 0.
   B
View Solution
B   Find the approximate zero of the function f(x) = lnx - e-3x.   B View Solution
B   Find the zero of the function f(x) = x7 + 4x3 + 12 using Newton's method.
   B
View Solution
B   Using Newton's approximation method, find the zero of the function f(x) = esin x + x.   B View Solution
B   Use Newton's method for approximating the zero(s) of the function f(x) = 2x2 - 2x - 4.
   B
View Solution
B   Use Newton's method for approximating the zeros of the function f(x) = 3x2 - 28.   B View Solution
B   Use Newton's method for approximating the zeros of the function f(x) = (ln x)2 - 2.
   B
View Solution
B   Use Newton's method for approximating the roots of the function f(x) = -3 + 1+x2.
   B
View Solution
B   Use Newton's method for approximating the root of the function f(x) = 1+x2 - x - 1.   B View Solution
B   Use Newton's method for approximating the root of the function f(x) = x - 4x + 3.   B View Solution
B   Use Newton's method for approximating the roots of the function f(x) = x4 + 3x3 + 5.   B View Solution
B   Use Newton's method for approximating the root of the function f(x) = 2x - 34.   B View Solution
B   Use Newton's method for approximating the root(s) of the function f(x) = 12x2 - 5x - 19.   B View Solution
B   Find the roots of f(x) = 2x2 - 17.
   B
View Solution
B   Find the root of f(x) = x3 - 5 using Newton's method.   B View Solution
B   Find the root of f(x) = 3x - 5 using Newton's method.   B View Solution
B   Use Newton's method for approximating the root of the function f(x) = x5 - 5.   B View Solution
B   Identify the Newton's iterative formula that helps to approximate the 5th root of the positive number k.
   B
View Solution
B   Use Newton's method for approximating the root of the function f(x) = x7 - 2.   B View Solution